US009083977B2

a2 United States Patent

(10) Patent No.: US 9,083,977 B2

Du et al. 45) Date of Patent: Jul. 14, 2015
(54) SYSTEM AND METHOD FOR RANDOMLY (56) References Cited
ACCESSING COMPRESSED DATA FROM
MEMORY U.S. PATENT DOCUMENTS
. 7,480,418 B2 1/2009 Niemi et al.
(71) Applicant: OmniVision Technologies, Inc., Santa 7,894,681 B2 2/2011 Kaithakapuzha
Clara, CA (US) 2006/0088221 Al* 4/2006 Henryetal. ... 382/232
2009/0148057 ALl* 6/2009 Chen et al. .oo..ooovrveennnn.. 382/243
(72) Inventors: Xuanming Du, San Jose, CA (US); 2014/0086309 Al* 3/2014 Beer-Gingold et al. . 375/240.02
Christopher Shane Coffman, San Jose, * cited by examiner
CA (US)
Primary Examiner — Jay Patel
(73) Assignee: OmniVision Technologies, Inc., Santa Assistant Examiner — Francis G Geroleo
Clara, CA (US) (74) Attorney, Agent, or Firm — Larry E. Henneman, Jr.;
Gregory P. Gibson; Henneman & Associates, PLC
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 (57 ABSTRACT
U.S.C. 154(b) by 345 days. A method facilitating random access to segments of com-
pressed data stored in memory includes the steps of receiving
(21) Appl. No.: 13/686,574 a series of data segments, encoding the series of data seg-
ments into a series of compressed data segments of variable
(22) Filed: Now. 27, 2012 segment sizes, storing the series of compressed data segments
in a memory, and generating a locator for each of the com-
(65) Prior Publication Data pressed data segments. Each locator is indicative of the loca-
tion of an associated compressed data segment in the
US 2014/0146872 Al May 29, 2014 memory. A method for randomly accessing a segment of
compressed data includes receiving a request for a com-
(1) Int.Cl. pressed data segment, retrieving a locator associated with the
HO4N 7726 (2006.01) requested segment, using the retrieved locator to locate the
HO4N 19/423 (2014.01) requested segment in the memory, and retrieving the
(52) US.CL requested segment from the memory. Thus, compressed data
CPC v, HO4N 19/423 (2014.11) segments can be decoded in a different order than the order
(58) Field of Classification Search they were encoded in. Systems for implementing the methods

CPC HO4N 19/423; HO4N 19/70
USPC oo 375/240.2; 382/232, 233
See application file for complete search history.

are also disclosed.

39 Claims, 13 Drawing Sheets

Host
/ Device 100
Timing and
Control Unit
136
T Decoded
Data In 138 Data Requests Data Out
116 T_—120 118
' |
' |
: Encoder Decoder |
| 106 1o |
| W] T
l Locator Locator S Random Acccss |
| Generator Buffer Controller (RAC) |
I 108 S 112 li4 |
| 128 |
| 126 130 :
-- - I - - - - - - - - - =\ - i Codec
" System
f 124 Compressed 102

Data Mcmory
104

US 9,083,977 B2

Sheet 1 of 13

Jul. 14, 2015

U.S. Patent

["DId

[Zus
KIOWdIA BIR(
passardwo)

vIT
(OVY) v[jonu0)

01
WAJSAS

_

| — 8Tl

|

_

_

| [~

_

| otT

_ 19p022(

_

_

8I1

mo ereq
papooa(

001 DOT/DQ\

150H

vel

SSAOVY Wopuey

411

sysanbay] vie(g

(43!

8¢l

Japgng
1018007

30T
10)RISUSD)

101800

901
1apoouy

9¢T

nun [01U0D

pue Sulwi],

uf me(]

US 9,083,977 B2

Sheet 2 of 13

Jul. 14, 2015

U.S. Patent

00¢

¢ DI4

2
yooig

_
Ll @O
yoorg

_
J—— —

_

_

_

_

("n
Jooid

d———d———-

g T __ _T

D
yoorg

(r'p
01y

(zoz \

(920t \

(1)zoz K

U.S. Patent Jul. 14, 2015 Sheet 3 of 13 US 9,083,977 B2

Blocks of

Image Data
- 138
312
~

| Encoder 106

Discrete Cosine Transform (DCT)
Unit 302

314 |

Quantization Unit 304

Default Quantization Data ~—4— 316

318

=l

Zig-Zag Unit 3

~—"

Run-Length Encoder 308

322

Entropy and Locator Unit (ELU)
310

Default Entropy Data

|
|

| |
| |
| |
| |
| |
| |
| |
| |
: 6 I
| 320 :
| |
| |
| |
| |
: |
|

| |
| |
: |

FIG. 3

U.S. Patent Jul. 14, 2015 Sheet 4 of 13 US 9,083,977 B2

202

8-by-8 Block /

of Pixel Data

Y /‘ 302

Discrete Cosine Transform (DCT)

-

404 ~N 406(1) 406(7) ~ .

DC [AC | AC | AC [AC | AC | AC | AC /

AC | AC | AC | AC | AC | AC | AC | AC

AC | AC | AC| AC| AC | AC | AC | AC
8-by-8 Block

of DCT
Coefficients

AC | AC | AC | AC | AC | AC | AC | AC

AC | AC | AC | AC | AC | AC | AC | AC

AC | AC | AC | AC | AC | AC | AC | AC

AC | AC | AC | AC | AC | AC | AC | AC

AC | AC | AC | AC | AC | AC | AC | AC

406(62) AN 406(63)

FIG. 4

U.S. Patent Jul. 14, 2015 Sheet 5 of 13 US 9,083,977 B2

\ 502 504 ’/

108'_| 506 1 Accumulated

Size Register

From Run-
Length Encoder
322 “Ef 138
ELU 310 R R]
| 11
| | | 126
Address To
Default | Entropy Encoder and Offset . Locator
Entropy iati N
Data 354 [502 Detemlnatlon Buffer
2 | (AOD) Unit 504
|
|
|

To Compressed
Data Memory

FIG. 5

600

B i06_1 \ r— 602 /— 604

:- Block ID Address of Memory Location Bit Offset

FIG. 6

U.S. Patent Jul. 14, 2015 Sheet 6 of 13 US 9,083,977 B2

606 602 604
Y 4 a

|
| |
| 600D ™9 20201 Address of Mem. Loc. 0 0 |
| 600(2) —\—:_ - _2_05(_2)_ o Address of Mem. Loc. 0 37 |
| 600(3) \—1'_ - _2_05(_3)_ o Address of Mem. Loc. 1 5 |
| 600(4) —\—-I'_ - _2_05(2)_ o Address of Mem. Loc. 1 48 |
| 600(5) —\—-I'_ - _2_05(_5)_ o Address of Mem. Loc. 3 3 |
| e o ° |
| : : :
| 600(14400) ™" 202(14400) | Address of Mem. Loc. 7192 17 |
| 700" " END | Address of Mem, Loc. 7193 28 |
|) |
|

U.S. Patent Jul. 14, 2015 Sheet 7 of 13 US 9,083,977 B2

’4 64-bits wide »‘
|||||||‘||||||||||||||I||||||II||||||||‘IIIIIII‘IIIIIII'IIIIIIII

Address : Memory Location |
"0 |« —Comp. Data Seg. 804(1)~ #J# — C.D.S. 804(2) - -4 _ 802(0)
T T —— CD.S. 804(3) ————— o [\— 802(1)

I T C.D.S. 804(4) == ===—====—1 [- 8022)
R C.D.S. 804(5) ——————~- 1 —80203)
T7192 | eee ————pfa————— C.D.S. 804(14400) — - -——- [\~ 802(7192)
7193 fo——————————- 806 [202(7193)
__E \ = 802(x)

104
[138

Data Requests

138
120

|RAC 114 1|
From | Loca.tor and Data l?ata | .
Locator Retrieval (LDR) Trimmer o
Buffer | 902 8 904 || ? Decoder
132 | 906 | 134
130

To Compressed FIG . 9

Data Memory

U.S. Patent Jul. 14, 2015 Sheet 8 of 13 US 9,083,977 B2

Decoded Blocks of
Image Data 138
110 T 118

Inverse DCT 1010

| 1024

Inverse Quantization 1008

1022 ~——1—{ Default Quantization Data

— 1020

Inverse Zig-Zag 1006

| 1018

Run-Length Decoder 1004

Entropy Decoder 100

1014 1 Default Entropy Data

134 \
From RAC § o

From Compressed
Data Memory
128 /

FIG. 10

US 9,083,977 B2

Sheet 9 of 13

Jul. 14, 2015

U.S. Patent

A OTTT ATOWON SuryIoN |
_

_
_ 9z11 vk possaxdwo) fa—p _
_

_
| VT |
_ JI[ONUO)) $SI0IY WOopUBY CCLL Sounnoy Jopooad |
_
| _
_ 0C1T 1oyng 10)8007] — — QTTT sounnoy Iopodoug |

_
_

_

7111 Surwweidold vIpOJN |a—la— T 11 WOISAS SuneradQ _
_ _
(411! ~ \ i
8011 998jMU] 9011 [jonue) POTT Alowopy TOTT (shiun
JT0MIDN O/1 198 J[IB[OA-UON 3urssosoig

U.S. Patent Jul. 14, 2015 Sheet 10 of 13 US 9,083,977 B2

1200

J

Receive a Series of Data Segments

l \- 1202

Encode the Series of Data Segments
into Compressed Data Segments

l \- 1204

Store the Series of
Compressed Data Segments in Memory

l \- 1206

Generate a Locator for Each
Compressed Data Segment Indicative
of its Location in Memory

\- 1208

End

FIG. 12

U.S. Patent Jul. 14, 2015 Sheet 11 of 13 US 9,083,977 B2

1204

/

Perform a Discrete Cosine Transform (DCT) on a Data Segment
to Produce a Block of DCT Coefficients Having Absolute Values

l \- 1302

Quantize the Block of Absolute DCT
Coefficients into a Block of Quantized Coefficients

l \- 1304

Zig-Zag Encode the Block of Quantized
Coefficients into a Sequence of Quantized Coefficients

l \- 1306

Run-Length Encode the Sequence of Quantized
Coefficients into Run-Length-Encoded (RLE) Data

l \- 1308

Entropy Encode the RLE Data to Produce
One of the Series of Compressed Data Segments

\- 1310

End

FIG. 13

U.S. Patent Jul. 14, 2015 Sheet 12 of 13 US 9,083,977 B2

Sum the Sizes of Each Compressed Data Segment in the
Series Stored Prior to the Current Compressed Data Segment

l N 1402

Divide the Sum by the Width of the Compressed
Data Memory to Obtain a Quotient and a Remainder

l \- 1404

Convert the Quotient to a Memory Address

l \- 1406

Create the Locator with the Memory Address
in a First Field and the Remainder in a Second Field.

\- 1408

End

FIG. 14

U.S. Patent Jul. 14, 2015 Sheet 13 of 13 US 9,083,977 B2

1500

J

Receive a Request for a Compressed Data
Segment Selected from a Series Stored in Memory

l \ 1502

Retrieve a Locator Associated
with the Requested Compressed Data Segment

l \- 1504

Use the Locator to Locate the Requested Compressed
Data Segment within the Series in the Memory

l \- 1506

Retrieve the Requested
Compressed Data Segment from Memory

l \- 1508

Decode the Requested Compressed Data Segment

\- 1510

End

FIG. 15

US 9,083,977 B2

1
SYSTEM AND METHOD FOR RANDOMLY
ACCESSING COMPRESSED DATA FROM
MEMORY

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates generally to an encoder and decoder
system (“codec”) for compressing and decompressing data,
and more particularly to a codec system that facilitates decod-
ing segments of the compressed data independently and out of
the order in which those segments were encoded.

2. Description of the Background Art

Demand for media (e.g., video, still images, etc.), espe-
cially high-definition (HD) media, has increased dramatically
in recent years. Unfortunately, raw HD media contains very
large amounts of data, which makes storing the raw data
difficult. For example, storing a frame of raw HD video data
requires a very large frame buffer. This is problematic when
HD device developers are under pressure to reduce device
sizes and costs.

Codecs are used to increase data compression in media
devices. In a codec, the encoder receives the raw media data
and encodes it into compressed data, which can be stored in
memory for later retrieval. When the compressed data is
retrieved from memory, it is sent to a decoder, which decodes
the compressed data and outputs decoded media data for
playback.

Codecs, however, introduce problems of their own. For
example, popular image codecs (e.g., JPEG codecs, etc.)
introduce data dependencies into the compressed data. As a
result, the compressed data defining an image must be
decoded in the same order in which it was encoded (i.e., in a
first-in-first-out manner). This has the effect that a portion of
the decoded image cannot be decoded and accessed without
decoding the compressed data that was encoded before it.
Codecs also suffer the disadvantage that they require detailed
configuration information, for example a frame header, to be
stored with the compressed data and transferred between the
encoder and decoder. However, transmitting and storing the
configuration information is a disadvantage because it
increases both the amount of memory needed to store the
compressed data and the amount of data that needs to be
communicated within the media device.

What is needed, therefore, is a system and method that
facilitates independent and selective access to segments of
compressed data. What is also needed is a system and method
that facilitates decoding segments of compressed data in a
different order than they were encoded in. What is also
needed is a system and method for compressing data that does
not create data dependencies within the compressed data.
What is also needed is a system and method that eliminates
the need to transfer configuration information between the
encoder and decoder.

SUMMARY

The present invention overcomes the problems associated
with the prior art, by providing a system and method that
facilitates randomly accessing segments of compressed data
stored in a memory. The invention facilitates compressing
segments of data without introducing data dependencies
between compressed data segments. The invention also facili-
tates generating locators that indicate the locations associated
compressed data segments in memory. As a result, any of the
compressed data segments can be retrieved from memory and

10

15

20

25

30

35

40

45

50

55

60

65

2

decoded in any order, without requiring other compressed
data segments to also be decoded.

A method according to the present invention facilitates
random access to segments of compressed data stored in
memory. The method includes the steps of receiving a series
of data segments, encoding the series of data segments into a
series of compressed data segments having variable segment
sizes, storing the series of compressed data segments in a
compressed data memory, optionally free of header informa-
tion, and generating a locator for each of the compressed data
segments. Each locator is indicative of the location of an
associated compressed data segment in the compressed data
memory. Particular methods can also include the steps of
determining the size of each of the compressed data segments
in the series and/or storing the locators in a locator memory
for later retrieval.

According to a particular method, the locator includes a
memory address identifying a memory location in the com-
pressed data memory storing at least part of the associated
compressed data segment and an offset that identifies the
position of the first bit of the associated compressed data
segment within the identified memory location. In a more
particular method, a locator for an associated compressed
data segment is generated by calculating a sum of the sizes of
each of the compressed data segments stored prior to the
associated compressed data segment, dividing the sum by a
value equal to the width of the compressed data memory to
obtain a quotient and a remainder, converting the quotient to
the memory address of the locator, and setting the offset of the
locator equal to the remainder. According to another particu-
lar method, the locator can be a memory pointer.

According to a particular method, the series of data seg-
ments comprises a series of blocks of image data defining an
image, and the compressed data memory is a frame buffer.
According to such a method, the step of encoding the data
segments can include performing a discrete cosine transform
(DCT) on each block of image data to generate a series of
blocks of absolute DCT coefficients, which are DCT coeffi-
cients that are generated without reference to any other block
of DCT coefficients. The step of encoding can also include,
for each block of DCT coefficients, the steps of quantizing the
block of DCT coefficients to produce a block of quantized
coefficients, zig-zag encoding the block of quantized coeffi-
cients into a sequence of quantized coefficients, run-length-
encoding the sequence of quantized coefficients to produce
run-length-encoded data (RLE) data, and entropy encoding
the RLE data to produce one of the series of compressed data
segments. Optionally, the quantization data and entropy data
used during the steps of quantization and entropy encoding
does not change between images.

A method for randomly accessing a compressed data seg-
ment from the compressed data memory is also disclosed.
One method of the invention includes the steps of receiving a
request for a compressed data segment, retrieving a locator
associated with the requested compressed data segment,
using the retrieved locator to locate the requested compressed
data segment within the series of compressed data segments
stored in the compressed data memory, and retrieving the
requested compressed data segment. A particular method fur-
ther includes the steps of retrieving a second locator associ-
ated with a second compressed data segment stored in the
compressed data memory after the requested compressed
data segment, and using the second locator to locate and end
of the requested compressed data segment.

Another particular method includes the step of decoding
the compressed data. Thus, the invention enables a com-
pressed data segment to be retrieved and decoded out of order

US 9,083,977 B2

3

with the rest of the series of compressed data segments. In the
case of an image, the step of decoding the compressed data
segment can include the steps of entropy decoding the
requested compressed data segment to produce RLE data,
run-length decoding the RLE data to produce a plurality of
quantized coefficients, performing an inverse zig-zag process
onthe plurality of quantized coefficients to produce a block of
quantized coefficients, dequantizing the block of quantized
coefficients to produce a block of absolute DCT coefficients,
and performing an inverse DCT process on the block of
absolute DCT coefficients without reference to any other
block of DCT coefficients to produce a block of decoded
image data. According to a more particular method, the step
of' decoding can be performed without parsing a header asso-
ciated with the series of compressed data segments.

Non-transitory, electronically-readable storage medium
having code embodied therein for causing an electronic
device to perform the above methods of the invention are also
described. The term “non-transitory” is intended to distin-
guish storage media from transitory electrical signals. How-
ever, re-writable memories are intended to be “non-transi-
tory”.

The present invention also describes systems facilitating
random access to segments of compressed data stored in a
compressed data memory. According to one embodiment, the
system includes a data input coupled to receive a series of data
segments, an encoder operative to encode the series of data
segments into a series of compressed data segments having
variable segment sizes, a compressed data memory coupled
to receive and store the series of compressed data segments,
and alocator generator operative to generate a locator for each
of' the series of compressed data segments, where the locator
is indicative of the location of an associated compressed data
segment in the series.

Particular embodiments of the encoder of the present
invention can be implemented to perform any of the particular
encoding methods described above, particularly with respect
to the absolute DCT-, quantization-, zig-zag-, run-length-,
and entropy-encoding processes for encoding blocks of
image data into compressed data segments. Particular
embodiments of the locator generate of the present invention
can also be implemented to generate locators according to the
above-described methods, particularly with respect to deter-
mining the sizes of the compressed data segments and using
the sizes to generate the locators. Furthermore, any of the
above-described formats for the locators can also be imple-
mented in particular embodiments of the present invention.

A system for randomly accessing a segment of compressed
data from memory is also disclosed. According to one
embodiment, the system includes a data request input opera-
tive to receive a request for at least one compressed data
segment selected from a series of variable-size compressed
data segments stored in the compressed data memory. The
embodiment also includes a controller that is operative to
retrieve a locator associated with the requested compressed
data segment, to use the retrieved locator to locate the
requested compressed data segment in the compressed data
memory, and to retrieve the requested compressed data seg-
ment from memory. In a more particular embodiment, the
controller can also retrieve a second locator associated with a
second compressed data segment stored in the compressed
data memory and then use the second locator to locate the end
of the requested compressed data segment.

The system can also include a decoder operative to decode
the requested compressed data segments. In a particular
embodiment, the decoder can use inverse entropy, inverse
run-length, inverse zig-zag, inverse quantization, and inverse

10

15

20

25

30

35

40

45

50

55

60

65

4

DCT processes to decode the compressed data segment. In
another particular embodiment, the decoder can decode the
requested compressed data segment without parsing a com-
pressed data header.

A data structure for a locator for locating an associated
compressed data segment in memory is also disclosed. The
data structure can be stored in a non-transitory, electronically-
readable storage medium. In a particular embodiment, the
data structure includes a first field storing data defining a
memory address identifying a memory location in the
memory in which at least a portion of the associated com-
pressed data segment is stored. The data structure also
includes a second field storing data defining an offset, where
the offset is indicative of a bit position within the memory
location where the associated compressed data segment
begins. In a more particular embodiment, the data structure
further includes a third field storing data uniquely identifying
the associated compressed data segment from a plurality of
other compressed data segments.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described with reference to the
following drawings, wherein like reference numbers denote
substantially similar elements:

FIG. 1 is a block diagram of a host device that includes an
encoder and decoder (codec) system according to one
embodiment of the present invention;

FIG. 2 is a diagram illustrating how an image can be
divided into a plurality of data segments according to the
present invention;

FIG. 3 is a block diagram showing the encoder of FIG. 1 in
greater detail, according to one embodiment of the present
invention;

FIG. 41is adiagram showing the Discrete Cosine Transform
(DCT) unit of FIG. 3 performing a DCT on a block of image
data according to the present invention;

FIG. 5 is a block diagram showing the entropy and locator
unit (ELU) of FIG. 3 in greater detail, according to one
embodiment of the present invention;

FIG. 6 shows a data structure for a locator, according to one
embodiment of the present invention;

FIG. 7 shows the locator buffer of FIG. 1 storing a plurality
oflocators according to one embodiment of the present inven-
tion;

FIG. 8 shows the compressed data memory of FIG. 1
storing a series of compressed data segments associated with
the locators of FIG. 7 according to one embodiment of the
present invention;

FIG. 9 is a block diagram showing the Random Access
Controller of FIG. 1 in greater detail, according to one
embodiment of the present invention;

FIG. 10 is a block diagram showing the decoder of FIG. 1
in greater detail, according to one embodiment of the present
invention;

FIG. 11 is a block diagram of a computer system showing
the codec system of the present invention implemented in
software, according to one embodiment of the present inven-
tion;

FIG. 12 is aflowchart summarizing a method of facilitating
random access to segments of compressed data stored in a
memory, according to the present invention;

FIG. 13 is a flowchart summarizing a particular method of
performing the second step (encode the series of data seg-
ments) of the method of FIG. 12, according to the present
invention;

US 9,083,977 B2

5

FIG. 14 is flowchart summarizing a particular method of
performing the fourth step (generate locator) of the method of
FIG. 12 according to the present invention; and

FIG. 15 is a flowchart summarizing a method of randomly
accessing a segment of compressed data from memory,
according to the present invention.

DETAILED DESCRIPTION

The present invention overcomes the problems associated
with the prior art, by providing a system and method that
facilitates randomly accessing segments of compressed data
stored in a memory. In the following description, numerous
specific details are set forth (e.g., particular routines and
components for generating locators, data trimming practices,
etc.) in order to provide a thorough understanding of the
invention. Those skilled in the art will recognize, however,
that the invention may be practiced apart from these specific
details. In other instances, details of well-known data com-
pression practices (e.g., particular encoding and decoding
techniques, routine optimization) and components have been
omitted, so as not to unnecessarily obscure the present inven-
tion.

FIG. 11is ablock diagram of a host device 100 that includes
an encoder and decoder (codec) system 102 according to one
embodiment of the present invention. Codec system 102,
among other advantages, facilitates randomly accessing seg-
ments of compressed data stored in a compressed data
memory 104. Codec system 102 includes an encoder 106
including a locator generator 108, a decoder 110, a locator
buffer 112, and a random access controller (RAC) 114.
Uncompressed data is provided to codec system 102 via a
data input 116, and decoded data is provided from codec
system 102 via a decoded data output 118. Data requests to
randomly access segments of compressed data from com-
pressed data memory 104 are provided from host device 100
via data request input 120.

Host device 100 represents any system or device that would
benefit from the ability to encode (compress) data, decode
(decompress) data, and/or randomly retrieve and decode the
segments of compressed data stored in compressed data
memory 104. In the present embodiment, host device 100 is
an image processor and codec system 102 facilitates ran-
domly accessing segments of a compressed image (e.g., a
compressed frame of video) stored in compressed data
memory 104. Host device 100 can be implemented, for
example, in integrated circuitry, software, etc. and/or any
combination thereof.

The components of codec system 102 operate as follows.
Encoder 106 receives a series of uncompressed data segments
via data input 116, encodes the series of data segments into a
series of compressed data segments, and provides the series
of compressed data segments to compressed data memory
104 via data path 124. As will be described in more detail
below, encoder 106 provides a means for encoding each of the
data segments independently of any other of the compressed
data segments. In one embodiment, encoder 106 is similar to
aJoint Photographic Experts Group (JPEG) encoder but is not
constrained by the JPEG compression standard or its associ-
ated file formats (e.g., JIF, Exif, JFIF, etc.).

Encoder 106 includes a locator generator 108 that gener-
ates a locator for each of the compressed data segments in the
series. Hach locator advantageously indicates a location in the
compressed data memory 104 where an associated com-
pressed data segment is stored. Locator generator 108 stores
a locator for each of'the series of compressed data segment in
the locator buffer 112 via data path 126. Thus, locator gen-

10

15

20

25

30

35

40

45

50

55

60

65

6

erator 108 and the generated locators are means for locating
the compressed data segments in the compressed data
memory. While locator generator 108 is shown incorporated
in encoder 106 in FIG. 1, locator generator 108 can alterna-
tively be embodied outside of encoder 106.

Compressed data memory 104 receives the series of com-
pressed data segments from encoder 106 via data path 124
and stores each of the compressed data segments therein.
Decoder 110 can read compressed data segments directly
from compressed data memory 104 via data path 128 (e.g.,
when decompressing a whole image). Additionally, RAC 114
can read compressed data segments from compressed data
memory 104 via data path 130 in any order, (e.g., when
decompressing only portions of an image), and provide those
to compressed data segments to decoder 110 via data path
134.

In the present embodiment of the invention, compressed
data memory 104 is a frame buffer adapted to contiguously
store a series of compressed data segments associated with an
image (e.g., a frame of video) in a plurality of memory loca-
tions. Compressed data memory 104 can be implemented
within host device 100 or, alternatively, can be a memory
external to host device 100. As another example, compressed
data memory 104 can be a memory dedicated to codec system
102.

Locator buffer 112 receives and stores the locators from
encoder 106 via data path 126. Each locator is stored in
locator buffer 112 such that it can be associated with the
corresponding compressed data segment. Locator buffer 112
also provides locators to RAC 114 via data path 132 when
requested by RAC 114. While locator buffer 112 is shown as
being a memory within codec system 102, it should be under-
stood that locator buffer 112 can be implemented anywhere in
host device 100 or even externally to host device 100.

RAC 114 utilizes the locators in locator buffer 112 to
retrieve one or more compressed data segments from com-
pressed data memory 104 and to provide those compressed
data segments to decoder 110 in any order indicated by the
data requests received on data request input 120. In particular,
RAC 114 receives requests for data segments via data request
input 120 from host device 100. RAC 114 retrieves locators
for the requested data segments via data path 132 and then
reads the requested compressed data segments from com-
pressed data memory 104 via data path 130. RAC 114 then
provides the one or more requested compressed data seg-
ments to decoder 110 for decoding via data path 134. As
indicated above, host device 100 can request data segments in
any desired sequence, and RAC 114 will read the correspond-
ing compressed data segments from compressed data
memory 104 and decoded according to that sequence.

Decoder 110 receives compressed data segments from
compressed data memory 104 and RAC 114 via data paths
128 and 134, respectively, and decodes those compressed
data segments. Decoder 110 then provides decoded data seg-
ments via decoded data output 118 to host device 100 for
further use as requested by host device 100. As will be
described more below, in one embodiment decoder 110 is
similar to a JPEG decoder but is not constrained by the JPEG
compression standard and its associated file formats.

FIG. 1 also shows that host device 102 includes a timing
and control unit 136, which provides timing and other control
signals (e.g., clock pulses, enable signals, reset signals, etc.)
to the elements of codec system 102 and compressed data
memory 104 via a timing and control path 138. The timing
and other control signals provided by timing and control unit
136 enable codec system 102 and compressed data memory
104 to carry out their intended functions and to move data

US 9,083,977 B2

7

through codec system 102 and compressed data memory 104
at the appropriate times and in the appropriate orders.

Timing and control unit 136 and timing and control path
138 are shown representationally. However, those skilled in
the art will realize that timing and control unit 136 and timing
and control path 138 can be implemented in various ways
(e.g., separate units and busses for timing signals and control
signals, separate units for host device 100 and codec system
102, etc.). Additionally, timing and control elements can also
be implemented inside codec system 102.

FIG. 2 is a diagram illustrating how an image 200 (e.g., a
frame of video) can be divided into a plurality of data seg-
ments 202(1)-202(7). As shown in detail 204, each data seg-
ment 202(1)-202(z) includes image data for an 8-by-8 block
of pixels 206 of the image 200. Therefore, if image 200 has
1280x720 pixels, it can be divided into 160x90 (i.e., 14,400)
blocks of image data, with each block 202(1)-202(14400)
defining a uniform amount of pixel data.

In the present embodiment, host device 100 is responsible
for dividing each image 200 into an array of data segments
202(1)-202(n) (hereinafter, referred to as blocks 202(1)-202
(n)) and providing the blocks 202(1)-202(#) as a series to data
input 116 of codec system 102. Host device 100 also provides
the series of blocks 202(1)-202(#) to codec system 102 in a
predetermined sequence known to the host device 100 and to
the components of codec system 102. In the present embodi-
ment, host device 100 provides the blocks 202(1)-202(x) in a
sequence beginning with block 202(1) in the top left of the
array, moving to the end of the first row, and then moving
row-by-row down the array, ending with block 202(#) in the
bottom right of the array. Thus, for the array shown in FIG. 2,
the sequence would be blocks 202(1, 1), 202(2, 1), . . . 202(j,
1), 202(1, 2), 202(2, 2), . . . 202(i, 2), . . . 2021, j),
202(2, j), . . . and ending with block 202(j, j).

Inthe present embodiment, host device 100 can also format
each image 200 for compatibility with codec system 102. For
example, host device 100 can convert an image from one
color space (e.g., Red, Green, Blue (RGB), etc.) into another
color space (e.g., YCbCr, etc.). Additionally, host device 100
can also separate an image into its color space components
(e.g., Y, Cb, Cr; etc.), such that multiple images 200 are
generated for each composite image. In such a case, each
image 200 would include data for only one of the color space
components of the composite image. These and other block
preparation techniques are available to host device 100.

While host device 200 is responsible for block preparation
in the present embodiment prior to providing image data to
encoder 106, it will be appreciated that encoder 106 could
also prepare the series of blocks 202(1)-202(z) for encoding.

FIG. 3 is ablock diagram showing encoder 106 of FIG. 1in
greater detail, according to one embodiment of the present
invention. Encoder 106 includes a Discrete Cosine Transform
(DCT) unit 302, a quantization unit 304, a zig-zag unit 306, a
run-length encoder 308, and an entropy and locator unit
(ELU) 310.

Encoder 106 sequentially receives a series of blocks 202
(1)-202(n) of uncompressed (raw) image data on an encoder
input path 312 from host device 100 according to the prede-
termined sequence discussed above. Encoder 106 receives
and encodes each block 202(1)-202(») in the series as fol-
lows.

DCT unit 302 receives each block 202(1)-202(r) of image
data and performs an absolute DCT on the block 202,
whereby the block 202 of image data is transformed into an
8-by-8 block of 64 DCT coefficients in the frequency domain.
As will be described in more detail below, the DCT is per-
formed such that all of the DCT coefficients in the block are

10

15

20

25

30

35

40

45

50

55

60

65

8

absolute values. Because all of the DCT coefficients in each
block of DCT coefficients are absolute values, there are no
block-to-block data dependencies introduced into the series
of compressed data segments generated by encoder 106.
Thus, DCT unit 302 can be considered an absolute DCT unit
302, which performs an absolute DCT on each block 202 of
image data. DCT unit 302 provides each resulting block of
DCT coefficients to quantization unit 304 via data path 314.

Quantization unit 304 receives each block of absolute DCT
coefficients and quantizes the block of DCT coefficients
using default quantization data 316 to produce an 8-by-8
block of quantized coefficients. In the present embodiment,
default quantization data 316 is a default quantization table,
but could alternatively include a default quantization value
used to quantize all DCT coefficients. Quantization unit 304
quantizes the block of DCT coefficients by dividing each
DCT coefficient by a corresponding quantization value in the
default quantization table 316 and then rounding the quotient
to the nearest integer.

It should be noted that default quantization data 316 can be
stored inside or outside of encoder 106. For example, default
quantization data 316 can be stored in a memory external to
encoder 106 accessible by quantization unit 304. Alterna-
tively, default quantization data 316 can be defined in the
integrated circuitry of encoder 106.

Using the default quantization data 316 to quantize the
blocks of DCT coefficients over multiple images 200 pro-
vides important advantages. First, because default quantiza-
tion data 316 does not have to change, quantization data does
not have to be provided in a header to decoder 110 to config-
ure the inverse quantization process. Rather, the decoder 110
can be programmed to use the same default quantization data
as encoder 106 over multiple images/frames. Moreover,
because a header is not needed to transfer the quantization
data to decoder 110, the header can be eliminated instead of
being stored with the compressed data in compressed data
memory 104, which increases data compression and reduces
data transfer times.

After quantization, quantization unit 304 provides each
block of quantized coefficients to zig-zag unit 306 via data
path 318. Zig-zag unit 306 receives each block of quantized
coefficients from quantization unit 304 and performs a “zig-
zag” operation on the block. The zig-zag operation arranges
the block of quantized coefficients into a linear sequence by
“zig-zagging” along the diagonals of the block, as is known in
the art. For each block of quantized coefficients, zig-zag unit
306 outputs a linear sequence of quantized coefficients to
run-length encoder 308 via data path 320.

Run-length encoder 308 receives a linear sequence of
quantized coefficients associated with the block 202 from
zig-zag unit 306 and encodes the linear sequence into run-
length-encoded (RLE) data associated with the block. Run-
length encoding is a well-known form of data compression in
which runs of data having the same value (e.g., zero) are
stored as a count. A particular method for run-length encod-
ing stores the plurality of quantized coefficients associated
with the block 202 of image data as pairs of values, each pair
having a first value defining a run of zeros and a second value
indicating the next non-zero quantized coefficient. The
method also includes using an end-of-block (EOB) code to
indicate that all remaining quantized coefficients associated
with the block 202 have a value of zero. Once the RLE data is
generated, it is provided to ELU 310 via data path 322.

ELU 310 receives the RLE data associated the block 202
and entropy encodes it into entropy-encoded data (EED),
thereby defining a compressed data segment associated with
the block 202 of image data. In the entropy-encoding process,

US 9,083,977 B2

9

frequently-occurring RLE data is encoded using shorter
codes and infrequently-occurring RLE data is encoded using
longer codes. One type of entropy encoding is known in the
art as Huffman encoding. Entropy codes used to encode the
RLE data are stored as default entropy data 324 (e.g., a default
entropy look-up table) that is available to ELU 310. Once
entropy encoding is complete, ELU 310 provides the com-
pressed data segment associated with the block 202 of image
data to compressed data memory 104 via an encoder output
path 328, and data path 124.

Like default quantization data 316, default entropy data
324 can be stored externally to encoder 106 so long as entropy
encoder 310 has access to it. Moreover, default entropy data
324 provides the same advantages as default quantization
data 316. In particular, because default entropy data 324 does
not change between blocks 202(1)-202(») or between images
200, entropy data (e.g., an entropy table) does not have to be
provided in a header with the compressed data to decoder 110
to configure its inverse entropy process. Rather, decoder 110
will be programmed to use the same default entropy data 324
as encoder 106. Furthermore, header information containing
entropy data also does not have to be stored in compressed
data memory 104, thereby saving improving data compres-
sion and data transfer times.

In addition to being an entropy encoder, ELU 310 also
provides the functionality of locator generator 108 (FIG. 1).
For each compressed data segment associated with a block
202(1)-202(n), EL.U 310 generates a locator indicating where
that compressed data segment is stored in compressed data
memory 104. Because the encoding process of encoder 106
yields a series of compressed data segments, wherein each
compressed data segment has a variable segment size, the
locators generated by ELU 310 advantageously facilitate
locating and extracting any of the compressed data segments
from compressed data memory 104. According to one
embodiment of the invention, ELU 310 determines and uti-
lizes the variable segment sizes of the compressed data seg-
ments to generate their associated locators. Once a locator is
generated for a compressed data segment that is associated
with the block 202 of image 200, ELU 310 stores the locator
in locator buffer 112 (FIG. 1) via data path 126 and stores the
compressed data segment associated with the block 202 in
compressed data memory 104.

Thus, for a given image 200, encoder 106 generates a series
of compressed data segments that are stored in compressed
data memory 104, where each of the series of compressed
data segments is associated with one of the blocks 202(1)-
202(n) of image 200. Each of the series of compressed data
segments is also associated with one of the locators generated
by ELU 310 and stored in locator buffer 112. Thus, each of the
locators stored in locator buffer 112 is also associated with
one of blocks 202(1)-202(z) of image 200.

FIG. 4 is a diagram showing DCT unit 302 of FIG. 3
performing a DCT on one of blocks 202(1)-202(») of image
data. As shown in FIG. 4, DCT unit 302 transforms each
8-by-8 block 202 of image data into an 8-by-8 block 402 of
DCT coefficients in the frequency domain. Each block 402 of
DCT coefficients includes one DC coefficient 404 and 63 AC
coefficients 406(1)-406(63). As indicated above, the coeffi-
cients 404 and 406(1)-406(63) in each block 402 of DCT
coefficients are absolute values, such that data dependencies
are not introduced into the series of compressed data seg-
ments.

DCT processes are well-known in the art. The DCT process
tends to aggregate large DCT coefficients in the top left of the
block of DCT coefficients. Therefore, it is common for the
absolute value of the DC coefficient to be quite large, espe-
cially compared to the absolute values of the AC coefficients.

10

15

20

25

30

35

40

45

50

55

60

65

10

In an effort to increase data compression, prior art encoders
(e.g., JPEG encoders, etc.) encode the DC coefficient as the
difference between the absolute DC coefficient for a current
block and another value, such as the absolute DC coefficient
of the previous block. This is process is commonly termed
“prediction differencing”. Encoding this difference rather
than the absolute DC coefficient value results in better data
compression, but it also has the drawback that it introduces
data dependencies between consecutive blocks of DCT coet-
ficients. As aresult, a subsequent block of DCT coefficients in
the prior art cannot be decoded without also decoding the
previous block of DCT coefficients. Thus, the prior art is said
to use a “relative” DCT encoding technique, which requires
the prior art decoder to use a first-in-first-out decoding tech-
nique.

In contrast to the prior art, the DCT unit 302 of the present
invention encodes an absolute value for the DC coefficient
404 (and for each of the AC coefficients 406(1)-406(63)) for
each block 402 of DCT coefficients that it generates. There-
fore, the values of the DCT coefficients in each block 402 are
independent of the coefficient values in the other blocks 402
of DCT coefficients. While DCT unit 302 gives up some data
compression (approximately 5% or less) due to the larger
absolute DC coefficient 404, it has the advantage that no data
dependencies are introduced into the blocks 402 of DCT
coefficients. Thus, according to the invention, one com-
pressed data segment can be randomly retrieved from com-
pressed data memory 104 and decoded without having to
retrieve and decode any other compressed data segments.
Furthermore, any data compression lost by encoding the
absolute DCT coefficient values is compensated for, because
configuration data (e.g., a header with quantization and
entropy data, etc.) is not stored in compressed data memory
104.

FIG. 5 is a block diagram showing EL.U 310 (FIG. 3) in
greater detail, according to one embodiment of the invention.
As shown in FIG. 5, ELU 310 includes an entropy encoder
502, an address and offset determination (AOD) unit 504, and
an accumulated size register 506. In the present embodiment,
entropy encoder 502, AOD unit 504, and accumulated size
register 506 implement locator generator 108 (FIG.1).FIG. 5
also shows that EL.U 310 includes (or has access to) default
entropy data 324.

Entropy encoder 502 receives RLE data associated with
each block 202(1)-202() of image data via data path 322. For
each block 202(1)-202(z), entropy encoder 502 encodes the
RLE data with that block 202 into entropy-encoded data
(EED) using the default entropy data 324. The EED repre-
sents a compressed data segment associated with the block
202, which will be stored in compressed data memory 104.

Entropy encoder 502 also determines the size of the com-
pressed data segment associated with each block 202(1)-202
(n), wherein the size represents the amount of memory the
compressed data segment will occupy in compressed data
store 104. Because the EED is serial data, the size of the
compressed data segment can be expressed as a bit length of
the compressed data segment. Entropy encoder 502 commu-
nicates the size (bit length) of the compressed data segment
associated with each block 202(1)-202(#) to AOD unit 504
via data path 508. Entropy encoder 502 also provides the
compressed data segment to compressed data store 104 via
encoder output path 328.

AOD unit 504 generates a locator for each compressed data
segment of an associated block 202, which can be used to
locate and retrieve the compressed data segment from com-
pressed data memory 104. In the present embodiment, AOD

US 9,083,977 B2

11

unit 504 determines a locator for each compressed data seg-
ment based on the accumulated size value stored in accumu-
lated size register 506 and the width of compressed data
memory 104. AOD unit 504 also stores locators in locator
buffer 112 via data path 126. AOD unit 504 is also operative
to accumulate the sizes of the compressed data segments by
adding the size of each compressed data segment associated
with an image 200 to accumulated size register 506.

Accumulated size register 506 stores the accumulated size
of the compressed data segments associated with the blocks
202(1)-202(n) of image 200 as those blocks are encoded.
Before an image 200 is encoded using encoder 106, accumu-
lated size register 506 is reset, for example by a reset signal
received on timing and control path 138. As entropy encoder
502 generates sizes for each successive compressed data seg-
ment, AOD 504 will accumulate the size values, segment-by-
segment, in accumulated size register 506. Thus, for any
given block 202(5) of the image 200 being encoded, accumu-
lated size register 506 stores the total size of the compressed
data segments associated with all previously-encoded blocks
202(1)-202(5-1) of the image 200.

FIG. 6 shows a data structure for each locator 600 gener-
ated by AOD unit 504, according to one embodiment of the
present invention. As shown, each locator 600 includes a first
field 602, a second field 604, and an optional third field 606.

First field 602 contains data identifying a memory location
(e.g., a memory address) within compressed data memory
104 where the compressed data segment associated with the
locator 600 begins. In the present embodiment, compressed
data memory 104 is a 64-bit wide frame buffer. Accordingly,
first field 602 contains a memory address that identifies a
64-bit wide memory location in compressed data memory
104. The number of bits needed to define the memory
addresses stored in first field 602 will depend on the size of
compressed data memory 104.

Second field 604 contains data identifying a bit offset from
the beginning of the memory location identified by the
memory address in first field 602. In the present embodiment,
the bit offset indicates the number of bits of data starting from
the beginning of the memory location that are not part of the
compressed data segment associated with the locator 600.
The compressed data segment associated with the locator
600, therefore, begins with the bit following a number of bits
in the memory location equal to the bit offset. The number of
bits used in the second field 64 to define the bit offset will
depend on the width of the memory locations in compressed
data memory 104. For 64-bit wide memory locations, second
field 604 can be defined using six bits of data.

Third field 606 includes data associating locator 600 with
one of blocks 202(1)-202(») of image 200. For example, each
block 202(1)-202(») in image 200 could be assigned a unique
identifier, which is provided in third field 606 when the loca-
tor 600 is generated. The identifier 600 could then be used by
RAC 114 to retrieve the locator. In the present embodiment,
however, third field 606 is optional because the locators 600
can be stored in consecutive memory locations in locator
buffer 112 in the same predetermined sequence in which the
blocks 202(1)-202(») are encoded.

AOD 504 generates each locator 600 as follows. For each
compressed data segment, AOD 504 calculates the sum of the
sizes of all the previous compressed data segments generated
for image 200. In the embodiment shown in FIG. 5, AOD 504
obtains this sum by reading the value stored in accumulated
size register 506. AOD 504 then divides this sum by the width
(64 bits in the present embodiment) of compressed data
memory 104 to obtain a quotient and a remainder, both
expressed as integers. AOD 504 then converts (e.g., via a

35

40

45

12

lookup table, etc.) the quotient to an address of a memory
location in compressed data memory 104. This memory loca-
tion is where the compressed data segment will begin in
compressed data memory 104. AOD 504 then generates the
locator 600 using the resulting memory address as field 602
and the remainder as the bit offset in field 604. Once the
locator 600 for the current compressed data segment is gen-
erated, AOD 504 adds the size of the current compressed data
segment (previously obtained from entropy encoder 502) to
the accumulated value stored in the accumulated size register
506, such that the accumulated size value is updated to gen-
erate the locator 600 associated with the next compressed data
segment.

AQOD 504 can also generate locators 600 with the optional
third field 606, for example, by counting the number of times
entropy encoder 502 provides it with a size value. AOD 504
can then use this count value to supply third field 606 with a
value that associates the locator 600 with a particular block
202 of image data. In such a case, the count value used by
AOD 504 would be reset each time a new image 200 is
encoded, for example by a reset signal received via timing and
control path 138.

AOD 504 can also be operative to generate an optional
“end locator” (FIG. 7) that indicates the end of the com-
pressed data segment associated with the last block 202(z) of
the image 200 within compressed data memory 104. The end
locator provides the advantage that it enables RAC 114 to
locate the end of this compressed data segment and “trim” any
data that is not part of it before providing the compressed data
segment to decoder 110. AOD 504 generates the end locator
after the locator 600 associated with the last block 202(r) is
generated and before a next image 200 is encoded. The end
locator can include the same fields as the locators 600. AOD
504, for example, can generate the end locator using the
accumulated size value for the compressed data segments
associated with all of blocks 202(1)-202(») stored in accu-
mulated size register 506 and the algorithms described above
for generating fields 602 and 604. Additionally, AOD 504 can
provide the end locator with a third field that uniquely iden-
tifies the end locator.

FIG. 7 shows a data structure for locator buffer 112 (FIG. 1)
for storing a plurality of locators 600(1)-600(14400) associ-
ated with a 1280x720 image 200, according to the present
invention. Locators 600(1)-(14400) locate the compressed
data segments associated with blocks 202(1)-202(14400) of
the image 200, respectively, in compressed data memory 104.
Locator buffer 112 is also configured to store an end locator
700, as shown.

In the present embodiment, a 1280x720 image is the larg-
est image that host device 100 and codec system 102 process.
Therefore, locator buffer 112 includes sufficient memory to
store locators for any image up to 1280x720 pixels in size.
Those skilled in the art will realize that the number of locators
600 that locator buffer 112 should be able to store will vary
with the resolution of the images to be compressed.

Inthe present embodiment, locator buffer 112 sequentially
receives and stores locators 600(1)-600(14400) from encoder
106 in consecutive memory locations, beginning with a pre-
determined memory location. Thus, the locator 600(1) asso-
ciated with block 202(1) is stored in a first memory location,
the locator 600(2) associated with block 202(2) is stored in a
second memory location, and so on until the last locator
600(14400) associated with the last block 202(14400) is
stored. An end locator 700 is then stored after the last locator
600(14400) as shown. Because blocks 202(1)-202(14400)
are supplied to encoder 106 in a known predetermined order,
the locators 600(1)-600(14400) are generated and stored in

US 9,083,977 B2

13

the same known, predetermined order. Therefore, the locator
600 associated with any particular block 202 of the image 200
can be readily identified and retrieved from locator memory
112 by RAC 114. Accordingly, the third field 606 of the
locators 600(1)-600(14400) is optional in the present
embodiment. However, the third field 606 could otherwise
facilitate identifying a particular locator 600 as being associ-
ated with a particular block 202 ifthe locators 600 were stored
at random locations in locator buffer 112.

It should also be noted that the memory locations oflocator
buffer 112 can be reset between the encoding of consecutive
images 200 (e.g., via a reset signal received via timing and
control path 138), or at other predetermined times. Resetting
the locator buffer 112 for each image would ensure that the
locators 600 stored therein did not become corrupted, for
example, if the resolution of successive encoded images
changed.

FIG. 7 shows locators 600(1)-600(5), and 600(14400), and
end locator 700 for hypothetical compressed data segments
associated with blocks 202(1)-202(5) and 202(14400) of an
image 200. For the following explanation, it will be assumed
that the sizes (data length) of the compressed data segments
associated with blocks 202(1)-202(4) and 202(14400) are 37
bits, 32 bits, 43 bits, 83 bits, and 75 bits, respectively.

For the first block 202(1), the first field 602 of locator
600(1) indicates that the compressed data segment associated
with the first block 202(1) of image 200 begins in memory
location zero of compressed data memory 104. The second
field 604 of locator 600(1) further indicates that the com-
pressed data segment associated with block 202(1) begins
with the first bit in memory location zero, because the bit
offset is zero. Because the compressed data segment associ-
ated with block 202(1) is 37 bits long, it occupies the first 37
bits of memory location zero. AOD 504 generated locator
600(1) by dividing the sum of the bit lengths of the previ-
ously-compressed data segments for image 200 (in this case
zero) by 64 (the width of the memory locations in compressed
data memory 104), to obtain the resulting quotient of zero and
remainder of zero. This quotient was then converted to the
address for memory location zero and stored in first field 602,
and the remainder was stored as the bit offset in second field
604.

Locator 600(2) indicates that the compressed data segment
associated with the second block 202(2) of image 200 begins
in memory location zero (first field 602) after the 377 bit
(second field 604). (Recall the first 37 bits are occupied by the
compressed data segment associated with the first block 202
(1).) AOD 504 generated locator 600(2) by dividing the sum
of'thebit lengths of the previously-compressed data segments
for image 200 (in this case the sum is 37, which is stored in
accumulated size register 506) by 64, to obtain the resulting
quotient of zero and the remainder of 37. This quotient is then
converted to the address for memory location zero and stored
in first field 602, and the remainder is stored as the bit offset
in second field 604.

Locator 600(3) indicates that the compressed data segment
associated with the third block 202(3) of image 200 begins in
memory location one (first field 602) after the fifth bit (second
field 604). (The first five bits are occupied by the compressed
data segment associated with the second block 202(2).) AOD
504 generated locator 600(3) by dividing the sum of the bit
lengths of the previously-compressed data segments for
image 200 (in this case the sum of 37 bits+32 bits, which is
stored in accumulated size register 506) by 64, to obtain the
resulting quotient of one and remainder of five. This quotient
is then converted to the address for memory location one and

10

15

20

25

30

35

40

45

50

55

60

65

14

stored in first field 602, and the remainder is stored as the bit
offset in second field 604 of locator 600(3).

Locator 600(4) indicates that the compressed data segment
associated with the fourth block 202(4) of image 200 begins
in memory location one (first field 602) after the 487 bit
(second field 604). (The first 48 bits are occupied by the
compressed data segment associated with the third block
202(3).) AOD 504 generated locator 600(4) by dividing the
sum of the bit lengths of the previously-compressed data
segments (in this case the sum of 37 bits+32 bits+43 bits,
which is stored in accumulated size register 506) by 64, to
obtain the resulting quotient of one and remainder of 48. This
quotient is then converted to the address for memory location
one and stored in first field 602, and the remainder is stored as
the bit offset in second field 604 of locator 600(4).

Locator 600(5) indicates that the compressed data segment
associated with the fifth block 202(5) of image 200 begins in
memory location three (first field 602) after the third bit
(second field 604). (The first three bits are occupied by the
compressed data segment associated with the fourth block
202(4).) AOD 504 generated locator 600(5) by dividing the
sum of the bit lengths of the previously-compressed data
segments for image 200 (in this case the sum of 37 bits+32
bits+43 bits+83 bits) by 64, to obtain the resulting quotient of
three and remainder of three. This quotient is then converted
to the address for memory location three and stored in first
field 602, and the remainder is stored as the bit offset in
second field 604.

Locator 600(14400) indicates that the compressed data
segment associated with the last block 202(14400) of image
200 begins in memory location 7192 (first field 602) after the
17% bit (second field 604). Additionally, end locator 700
indicates that the compressed data segment associated with
block 202(14400) ends in memory location 7193 (first field
602) with the 287 bit in that memory location. AOD 504
generated end locator 700 by dividing the sum of the bit
lengths of all the compressed data segments for image 200
(which stored in accumulated size register 506 after locator
600(14400) is generated) by 64, to obtain the resulting quo-
tient of 7193 and remainder of 28. This quotient is then
converted to the address for memory location 7193 and stored
in first field 702, and the remainder is stored in second field
704, indicating the last bit of the compressed data segment
associated with block 202(14400).

FIG. 8 shows compressed data memory 104 (FIG. 1) stor-
ing the series of hypothetical compressed data segments asso-
ciated with locators 600(1)-600(5) and 600(14400) of FIG. 7.
Compressed data memory 104 includes a plurality of addres-
sable memory locations 802(0)-802(x). The number of
memory locations 802(0)-802(x) shown in compressed data
memory 104 is exemplary in nature, and can vary by appli-
cation and compression ratio, and should not be construed as
limiting the invention. As shown in FIG. 8, each memory
location 802(0)-802(x) is 64 bits wide.

Compressed data memory 104 stores the series of com-
pressed data segments 804(1)-804(») associated with blocks
202(1)-202(n) of image 200 contiguously in the memory
locations 802(0)-802(x). In the hypothetical example shown,
the series of compressed data segments 804(1)-804(14400)
associated with the blocks 202(1)-202(14400) of the 1280x
720 pixel image 200 occupy memory locations 802(0)-802
(7193). The memory locations 802(1)-802(x) of compressed
data memory 104 may be cleared as needed (e.g., between
consecutive images, etc.), for example by a reset signal
received via timing and control path 138.

The locators 600(1)-600(14400) indicate the locations of
the associated compressed data segments 804(1)-804(14400)

US 9,083,977 B2

15

within the memory locations 802(0)-802(7193). For
example, compressed data segment 804(1) begins with the
first bit in memory location 802(0), as indicated by locator
600(1). Compressed data segment (“C.D.S.”) 804(2) begins
after the 37 bit (i.e., begins with the 38" bit) in memory
location 802(0), as indicated by locator 600(2). Compressed
data segment 804(3) begins after the fifth bit in memory
location 802(1), as indicated by locator 600(3). Compressed
data segment 804(4) begins after the 48" bit in memory
location 802(1), as indicated by locator 600(4). Compressed
data segment 804(5) begins after the third bit in memory
location 802(3), as indicated by locator 600(5). This contin-
ues to the last compressed data segment 804(14400) for the
image 200, which begins after the 17% bit in memory location
802(7192). End locator 700 finally indicates that the end of
compressed data segment 804(14400) ends with the 28” bit in
memory location 802(7193).

FIG. 9 is a block diagram showing RAC 114 (FIG. 1) in
greater detail, according to one embodiment of the invention.
As shown, RAC 114 receives requests for any of blocks
202(1)-202(n) of image 200 from host device 100 via data
request input 120. The requests from host device 100 provide
an indication (e.g., a block identifier, etc.) as to which
block(s) 202(1)-202(r) of image 200 that host device 100
wants access to and, accordingly, which compressed data
segment(s) stored in compressed data memory 104 need to be
decoded. For each requested block, RAC 114 retrieves the
associated compressed data segment from compressed data
memory 104, and provides the retrieved compressed data
segment to decoder 110 for decoding into a decoded block of
image data. RAC 114 provides an important advantage in that
it can retrieve and output the compressed data segments from
compressed data memory 104 in any order requested by host
device 100. In other words, the invention facilitates randomly
accessing and decoding the compressed data segments asso-
ciated the blocks 202(1)-202(#) of image 200, in any order.

In FIG. 9, RAC 114 is shown to include a locator and data
retrieval (LDR) unit 902 and a data trimmer 904, which
communicate via a data path 906. When a request for a block
202 arrives via data request input 120, LDR unit 902 retrieves
the locator 600 associated with the requested block 202, as
well as the locator 600 for the block 202 that was encoded
next after the requested block 202. In the case that the last
block 202(%) is requested, LDR unit 902 retrieves the locator
600() and the end locator 700. In the case that a plurality of
consecutive blocks 202 are requested, LDR unit 902 retrieves
the locator 600 associated with the first block 202 in the
requested plurality and the locator for the block 202 that was
encoded next after the last block 202 in the requested plurality
orthe end locator 700. Thus, in the present embodiment, LDR
unit 902 retrieves at least two locators 600, or one locator 600
and the end locator 700, for any of the above request types
received on data request input 120.

Because the blocks 202(1)-202(») of image 200 are
encoded in a predetermined sequence and because the loca-
tors 600(1)-600(») and 700 are generated and stored in loca-
tor buffer 112 in the same predetermined sequence for each
image 200, LDR unit 902 can retrieve the appropriate locators
600(1)-600(72) and 700 from locator buffer 112 if it knows this
predetermined sequence and the memory locations in locator
buffer 112 at which the locators 600(1)-600(») and 700 will
be stored. Optionally, the data requests can include identifiers
that match the identifiers contained in third field 606 of the
locators 600(1)-600() and end locator 700), which LDR unit
902 can use to retrieve the requested locators 600 and end
locator 700 from locator buffer 112.

30

35

40

45

55

16

Using the locators 600 retrieved for a request from host
device 100, LDR unit 902 then retrieves the compressed data
segments 804 from compressed data memory 104 between
and including the two memory locations 802 identified in the
first fields 602 of the retrieved locators 600 or between the two
memory locations 802 identified in the first field 602 of the
locator 600 and the first field 702 of the end locator 700. LDR
unit 902 then provides the retrieved compressed data and at
least the bit offsets contained in second fields 604, or the bit
offset in the second field 604 and the value in the second field
704 of the end locator 700, to data trimmer 904 via data path
906.

Data trimmer 904 utilizes the values in the second fields
604 and 704 of the retrieved locators 600 and 700 to trim both
ends of the compressed data retrieved from compressed data
memory 104. The bit offset in the second field 604 of the first
locator 600 indicates that the first bit of the requested com-
pressed data begins after a number of bits equal to the bit
offset. Therefore, data trimmer 904 removes (“trims”) a num-
ber of bits in the retrieved compressed data equal to this offset.
Similarly, the second field 604 of the second locator 600 (or
the second field 704 of the end locator 700) indicates where
the compressed data for the last requested block 202 ends.
Accordingly, data trimmer 904 removes the portion of the
retrieved compressed data after the bit identified in the second
field 604 (or second field 704) of the second locator 600 (or
end locator 700). Once trimmed, data trimmer 904 provides
the requested compressed data segment(s) 804 associated
with the requested block(s) to decoder 110 via data path 134.

The following examples with reference to FIGS. 7 and 8
further explain the compressed data retrieval and trimming
aspects of the invention. The invention facilitates retrieval and
decoding of the compressed data segments of an image 200
independently and in any order.

In a first example, RAC 114 receives a request for the
second block 202(2) of image 200. Upon receiving the
request, LDR unit 902 retrieves locators 600(2) and 600(3)
from locator buffer 112 via data path 132. Based on the
memory addresses in first field 602 of locators 600(2) and
600(3), LDR unit 902 retrieves the 64 bits of compressed data
stored in memory location 802(0) and the 64 bits of com-
pressed data stored in memory location 802(1). LDR unit 902
then provides at least the second field 604 of each of locators
600(2) and 600(3), and the compressed data from memory
locations 802(0) and 802(1) to data trimmer 904. Data trim-
mer 904 utilizes the bit offset in the second field 604 of locator
600(2) to remove the portion of the compressed data from
memory location 802(0) that is not part of the compressed
data for the second block 202(2). Specifically, the first 37 bits
of compressed data stored in memory location 802(0) are
associated with the compressed data segment for the first
block 202(1) of image 200 and not the second block 202(2).
Therefore, data trimmer 904 removes these bits from the
beginning of the compressed data retrieved from memory
location 802(0). Data trimmer 904 then utilizes the bit offset
in the second field 604 of locator 600(3) to also remove the
portion of the compressed data retrieved from memory loca-
tion 802(1) that is not part of the compressed data for the
second block 202(2). Specifically, the sixth through the last
bits of compressed data retrieved from memory location 802
(1) are associated with the third block 202(3) and not the
second block 202(2). Therefore, data trimmer 904 removes
these bits from the compressed data retrieved from memory
location 802(1). The resulting compressed data retrieved
from memory locations 802(0) and 802(1) corresponds to the
compressed data segment 804(2) associated with block 202

US 9,083,977 B2

17
(2). Data trimmer 904 then provides compressed data seg-
ment 804(2) to decoder 110 for decoding via data path 134.

In a second example, RAC 114 receives a request for
blocks 202(2) through 202(4) of image 200. Accordingly,
LDR unit 902 retrieves locators 600(2) and 600(5) from loca-
tor buffer 112 via data path 132. Based on the memory
addresses identified in the first fields 602 of locators 600(2)
and 600(5), LDR unit 902 also retrieves the 64 bits of com-
pressed data stored in memory location 802(0) and memory
location 802(3), as well as the compressed data stored in
intermediate memory locations 802(1) and 802(2), of com-
pressed data memory 104. In other words, the LDR unit 902
retrieves the compressed data from memory locations 802(0)
through 802(3), inclusive. LDR unit 902 then provides at least
the second field 604 of each of locators 600(2) and 600(5),
and the compressed data from memory locations 802(0)-802
(3) to data trimmer 904. Data trimmer 904 utilizes the bit
offset in the second field 604 of locator 600(2) to remove the
first 37 bits of compressed data stored in memory location
802(0). Data trimmer 904 then utilizes the bit offset in the
second field 604 of locator 600(5) to also remove the fourth
through the last bits of compressed data retrieved from
memory location 802(3), because those bits are associated
with the fifth block 202(5) and not the fourth block 202(4).
The resulting compressed data from memory locations 802
(0)-802(3) corresponds to the compressed data segments 804
(2)-804(4) associated with blocks 202(2) through 202(4).
Data trimmer 904 then provides this series of compressed
data segments 804(2)-804(4) to decoder 110 for decoding via
data path 134.

In a third example, RAC 114 receives a request for the last
block 202(14400) of image 200. Upon receiving the request,
LDR unit 902 retrieves locator 600(14400) and end locator
700 from locator buffer 112 via data path 132. Based on the
memory addresses identified in first field 602 of locator 600
(14400) and the first field 702 of end locator 700, LDR unit
902 retrieves the 64 bits of compressed data stored in memory
location 802(7192) and the 64 bits of compressed data stored
in memory location 802(7193). LDR unit 902 then provides
at least the second field 604 of locator 600(14400) and the
second field 704 of end locator 700, and the compressed data
from memory locations 802(7192) and 802(7193), to data
trimmer 904. Data trimmer 904 utilizes the bit offset in the
second field 604 of locator 600(14400) to remove the first 17
bits of compressed data stored in memory location
802(7192), which are associated with the block 202(14399)
and not block 202(14400). Data trimmer 904 then utilizes the
value in the second field 704 of end locator 700 to also remove
the portion of the compressed data retrieved from memory
location 802(7193) that is not part of the compressed data for
the last block 202(14400). Specifically, the 297 through last
bits of compressed data stored in memory location 802(7193)
are removed. The resulting compressed data from memory
locations 802(7192)-802(7193) corresponds to compressed
data segment 804(14400) associated with the last block 202
(14400). RAC 114 then provides compressed data segment
804(14400) to decoder 110 via data path 134.

FIG. 10 is a block diagram showing decoder 110 in greater
detail, according to one embodiment of the present invention.
As shown in FIG. 10, decoder 110 includes an entropy
decoder 1002, a run-length decoder 1004, an inverse zig-zag
unit 1006, an inverse quantization unit 1008, and an inverse
DCT unit 1010.

Compressed data segments 804(1)-804(r) associated with
blocks 202(1)-202(r) of image 200 are provided to decoder
110 from RAC 114 via data path 134 and directly from
compressed data memory 104 via data path 128 to be decoded

10

15

20

25

30

35

40

45

50

55

60

65

18

into blocks of decoded image data. Data paths 128 and 134
converge into data path 1012, whereby compressed data seg-
ments are provided to entropy decoder 1002 as an entropy-
encoded data (EED) stream. In the present embodiment,
entropy decoder 1002 decodes only one EED stream atatime.
If the compressed data for an entire image 200 is to be
decoded, it is efficient to provide the compressed data seg-
ments 804(1)-804(») directly from compressed data memory
104. Alternatively, one or more randomly-accessed com-
pressed data segment(s) 804(1)-804(») are provided to
decoder 110 by RAC 114, as described previously. Decoder
110 decodes each compressed data segment 804(1)-804 (1)
according the following process.

Entropy decoder 1002 receives a compressed data segment
804 associated a block 202 via data path 1012 and performs
an inverse entropy process on the compressed data segment
804 to produce RLE data associated with the block 202.
Entropy decoder 1002 employs default entropy data 1014
during entropy decoding. The default entropy data 1014 is the
same as default entropy data 324 used by ELU 310 during the
encoding process. Because the entropy decoder 1002 can
access default entropy data 1014, entropy decoder 1002 does
not parse a data header in the compressed data stream to
obtain the entropy data used during the decoding process.

Once entropy decoder 1002 has decoded the compressed
data segment 804 into RLE data associated with the block
202, entropy decoder 1002 provides the RLE data to run-
length decoder 1004. Run-length decoder 1004 decodes the
RLE data into a plurality of quantized coefficients associated
with the block 202, and provides the plurality of quantized
coefficients to inverse zig-zag unit 1006 via data path 1018.

Inverse zig-zag unit 1006 receives the plurality of quan-
tized coefficients and performs an inverse zig-zag process on
the plurality of quantized coefficients to generate an 8-by-8
block of quantized coefficients. Inverse zig-zag unit 1006
then provides the block of quantized coefficients to inverse
quantization unit 1008 via data path 1020.

Inverse quantization unit 1008 receives the block of quan-
tized coefficients and dequantizes the block into an 8-by-8
block 402 of absolute DCT coefficients using the default
quantization data 1022. The default quantization data 1022 is
the same as the default quantization data 316 used by encoder
106 during the encoding process. Because inverse quantiza-
tion unit 1008 can access default quantization data 1022,
inverse quantization unit 1008 advantageously does not have
to parse a data header in the compressed data stream to obtain
the quantization data used during the dequantization process.
Following dequantization, inverse quantization unit 1008
provides the block of absolute DCT coefficients associated
with the block 202 to inverse DCT unit 1010 via data path
1024.

Inverse DCT unit 1010 receives the block of absolute DCT
coefficients and performs an inverse DCT on the block of
absolute DCT coefficients to produce an 8-by-8 block of
decoded pixel data. Because the DCT coefficients provided
by inverse quantization unit 1022 are all absolute values, the
inverse DCT process is very simple compared to the prior art.
For example, the relative inverse DCT process used in the
prior art involves adding a relative DC coefficient of the
current block to a DC coefficient value obtained from a pre-
vious block of DCT coefficients. In contrast, the inverse DCT
unit 1010 of the present invention receives an absolute DC
coefficient value from the inverse quantization unit 1008 and,
therefore, does not have to undertake an addition process like
the prior art.

Once the inverse DCT process is completed, inverse DCT
unit 1010 outputs an 8-by-8 block of decoded image data

US 9,083,977 B2

19

decompressed from the associated compressed data segment
804. The decoded block of image data can then be used as
desired by host device 100.

Like encoder 106, decoder 110 is not constrained by the
JPEG encoding standard and associated file formats. Advan-
tageously, decoder 110 has access to default entropy data
1014 and default quantization data 1022 such that decoder
110 does not have to parse a header to obtain configuration
information prior to decoding compressed data segments.
This feature in turn provides the advantage that compressed
data for an image (e.g., a frame of video) can be stored in
compressed data memory 104 without the header, thereby
improving data compression. Improving the compression in
this way also compensates for encoding the absolute DC
coefficients during the DCT process in encoder 106.

Particular embodiments of the invention have now been
described in detail. However, it should be understood that
various modifications to the invention are possible and within
the scope of the invention, especially in view of the concepts
and principles described above.

As one example, the functions of RAC 114 can be moved
within decoder 110. For example, the locator and compressed
data segment retrieval and/or compressed data trimming
functions of RAC 114 can be incorporated into decoder 110 in
or prior to entropy decoder 1002. Similarly, it may also be
beneficial to incorporate locator buffer 112 into a component
of decoder 110 or some other component shown in FIG. 1.

The invention can also be modified to use headers to pass
configuration information (e.g., entropy tables and quantiza-
tion tables, etc.) between the encoder and decoder for each
frame. Additionally, a header can be used to maintain com-
patibility with a particular compression standard (e.g.,
JPEG). However, storing the header in the compressed data
memory reduces the amount of data compression, and the
decoder 110 would have to be modified to parse the header.
The locators 600 might also have to be adjusted when they are
generated to compensate for the space occupied by the header
in the compressed data memory 104.

It should also be noted that the locators described herein
can also be modified according to the application. As one
example, each compressed data segment 804(1)-804 (1) could
be allocated one or more predetermined memory location(s)
802 in the compressed data memory 104, and each locator
600(1)-600(») could be a memory pointer pointing to that
predetermined location. As another example, each locator
might only indicate a size of the associated compressed data
segment. RAC 114 could then be modified to use these seg-
ment sizes to locate particular compressed data segments
804(1)-804(») in compressed data memory 104 in real time,
for example, by summing the sizes defined in all prior loca-
tors 600 in the frame and dividing by the width of memory
104 to obtain a quotient and remainder, which could be used
as described above. These and other modifications are pos-
sible.

As still another example, compressed data memory 104
and locator buffer 112 can be modified to store compressed
data segments 804(1)-804(») and locators 600(1)-600(z) for
multiple images/frames 200.

FIG. 11 is a block diagram of a computer system 1100
showing the encoder and/or the decoder of the present inven-
tion implemented by software, e.g., by code embodied in an
electronically-readable storage medium. Computer system
1100 includes one or more processing unit(s) (CPU) 1102,
non-volatile memory 1104, a user /O controller 1106, a
network interface 1108, and a working memory 1110, all
intercommunicating via a system bus 1112. CPU(s) 1102
execute(s) data and code contained in working memory 1110

10

15

20

25

30

35

40

45

50

55

60

65

20

to cause computer system 1100 to carry out its intended
functions (e.g. image processing, video playback, etc.). Non-
volatile memory 1104 (e.g. read-only memory, one or more
hard disk drives, flash memory, etc.) provides storage for data
and code (e.g., boot code, encoder and decoder programs,
random access controller programs, compressed image files,
etc.) that are retained even when computer system 1100 is
powered down. User /O controller 1106 manages connec-
tions for user interface devices (not shown), for example a
keyboard, mouse, monitor, printer, camera, and other such
devices that facilitate interaction and communication
between computer system 1100 and a user. Network interface
1108 (e.g. an Ethernet adapter card) transmits data packets
onto and receives data packets from an internetwork (e.g., the
Internet), such that a user can send and receive data (e.g.,
image data) via the internetwork. System bus 1112 facilitates
intercommunication between the various components of
computer system 1100.

Working memory 1110 (e.g. random access memory) pro-
vides dynamic memory to computer system 1100, and
includes executable code (e.g. an operating system 1114,
etc.), which is loaded into working memory 1110 during
system start-up. Operating system 1114 facilitates control
and execution of all other modules loaded into working
memory 1110. Working memory 1110 also includes media
programming 1116 (e.g., an image viewer, movie player,
etc.). Encoder routines 1118 represent routines that perform
any and all of the functionality of encoder 106 described
previously herein. Encoder routines 1118 generate locators
600(1)-600(») and store those locators 600(1)-600(x) in a
locator buffer 1120, which is also defined in working memory
1110. Working memory 1110 also includes decoder routines
1122 that can perform any and all of the functionality of
decoder 110 described herein. Working memory 1110 also
includes a random access controller module 1124, which
provides any and all of the functions of RAC 114 shown in
FIGS. 1 and 8. Compressed data segments 804(1)-804(»)
generated by encoder routines 1118 are stored in compressed
data buffer 1126 defined in working memory 1110, and/or it
can be stored in non-volatile memory 1104. Optionally, the
locators 600(1)-600(»2) stored in buffer 1120 can also be
stored in non-volatile memory 1104 (e.g., as a locator file) for
later retrieval.

Each of the foregoing programs and buffers can be initial-
ized in and/or loaded into working memory 1110 from non-
volatile memory 1104. Optionally, the foregoing programs
and buffers can be loaded into working memory 1110 from
alternate mass data storage devices including, but not limited
to, a CD-ROM, DVD-ROM, flash drive, etc. Additionally,
some or all of the programs described can be loaded into
working memory 1110 as needed.

The methods of the present invention will now be described
with reference to FIGS. 12-15. For the sake of clear explana-
tion, these methods might be described with reference to
particular elements of the previously-described embodiments
that perform particular functions. However, it should be noted
that other elements, whether explicitly described herein or
created in view of the present disclosure, could be substituted
forthose cited without departing from the scope of the present
invention. Therefore, it should be understood that the meth-
ods of the present invention are not limited to any particular
element(s) that perform(s) any particular function(s). Further,
some steps of the methods presented need not necessarily
occur in the order shown. For example, in some cases two or
more method steps may occur simultaneously. These and
other variations of the methods disclosed herein will be
readily apparent, especially in view of the description of the

US 9,083,977 B2

21

present invention provided previously herein, and are consid-
ered to be within the full scope of the invention.

FIG. 12 is a flowchart summarizing a method 1200 of
facilitating random access to segments of compressed data
stored in a compressed data memory, according to the present
invention. In a first step 1202, a series of data segments (e.g.,
blocks 202(1)-202(») of image 200) are received via a data
input 116. In a second step 1204, encoder 106 encodes the
series of data segments into a series of compressed data
segments 804(1)-804(»), where each of the compressed data
segments 804(1)-804(z) has a variable segment size. Then, in
a third step 1206, the series of compressed data segments
804(1)-804(n) are stored in the compressed data memory 104.
In a fourth step, 1208, a locator generator 108 generates a
locator 600 for each of the compressed data segments 804(1)-
804(n) in the series, where the locators 600(1)-600(») are
indicative of the locations of the associated compressed data
segments 804(1)-804(») in the compressed data memory 104.

FIG. 13 is a flowchart summarizing a particular method of
performing the second step 1204 (encode the series of data
segments) of method 1200 according to the present invention.
The method shown in FIG. 13 is performed for each data
segment in the series of data segments. According to this
method, the series of data segments comprise blocks 202(1)-
202(n) of pixel data of an image 200.

In a first step 1302, a discrete cosine transform (DCT) is
performed on one of the blocks 202(1)-202(r) of pixel data to
produce a block 402 of DCT coefficients, where the DCT
coefficients are absolute values (i.e., is not defined relative to
DCT coefficients in another block). Then, in a second step
1304, the block 402 of absolute DCT coefficients is quantized
using quantization data 316 to produce a block of quantized
coefficients. Next, in a third step 1306, the block of quantized
coefficients is zig-zag encoded to produce a sequence of
quantized coefficients and, in a fourth step 1308, the sequence
of quantized coefficients is run-length encoded to produce
run-length-encoded (RLE) data. Then, in a fifth step 1310, the
RLE data is entropy encoded using entropy data 324 to pro-
duce one of the series of compressed data segments 804(1)-
804(n).

FIG. 14 is flowchart summarizing a particular method of
performing the fourth step 1208 (generate locator) of the
method 1200 according to the present invention. The method
shown in FIG. 14 is performed for each locator 600 of the
plurality of locators 600(1)-600() that is generated. Recall
that each locator 600(1)-600(») is associated with one of the
series of compressed data segments 804(1)-804(7).

In a first step 1402, a sum of the sizes of each of the
compressed data segments 804 in the series of compressed
data segments 804(1)-804(») that were previously stored in
the compressed data memory 104 is calculated. Then, in a
second step 1404, this sum is divided by a value equal to the
width (e.g., 64 bits) of each of the memory locations 802(0)-
802(x) of compressed data memory 104 to obtain a quotient
and a remainder. Then, in a third step 1406, the quotient is
converted to a memory address identifying the memory loca-
tion 802 of memory locations 802(0)-802(x) where the com-
pressed data segment 804 associated with the locator 600 will
be stored. Then, in a fourth step 1408, the locator 600 for the
associated compressed data segment 804 is created with a first
field 602 containing the memory address and a second field
602 containing the remainder.

FIG. 15 is a flowchart summarizing a method 1500 of
randomly accessing a compressed data segment 804 of the
series of compressed data segments 804(1)-804(») from a
compressed data memory 104, according to the present inven-
tion. In a first step 1502, a request for at least one compressed

20

25

30

35

40

45

22

data segment 804 corresponding to at least one data segment
(e.g., at least one of blocks 202(1)-202(») of image 200) is
received via data request input 120. The requested com-
pressed data segment 804 is one of a series of variable-size
compressed data segments 804(1)-804(») stored in com-
pressed data memory 104. Then, in a second step 1504, at
least one locator 600 associated with the requested com-
pressed data segment 804 is retrieved from locator buffer 112.
Next, in a third step 1506, the retrieved locator 600 is used to
locate the requested compressed data segment 804 among the
series of compressed data segments 804(1)-804(») in the
compressed data memory 104. Then, in a fourth step 1508, the
requested compressed data segment 804 is retrieved from
compressed data memory 104 by RAC 114 and provided to
decoder 110. Following, in a fifth step 1510, the requested
compressed data segment 804 is decoded by decoder 110 and
a decoded data segment is provided on decoded data output
118.

The description of particular embodiments of the present
invention is now complete. Many of the described features
may be substituted, altered or omitted without departing from
the scope of the invention. For example, alternative locators
(e.g., memory pointers, segment sizes, etc.), may be substi-
tuted for the locators described herein. As another example,
frame headers can be employed to facilitate changing the data
used during encoding and decoding (e.g., quantization data
and entropy data) each frame. These and other deviations
from the particular embodiments shown will be apparent to
those skilled in the art, particularly in view of the foregoing
disclosure.

We claim:
1. A method facilitating random access to segments of
compressed data stored in memory, said method comprising:
receiving a series of data segments;
encoding said series of data segments into a series of com-
pressed data segments, each of said compressed data
segments having a variable segment size;
storing said series of compressed data segments in a com-
pressed data memory;
determining the size of each of said compressed data seg-
ments; and
generating a locator for each of said compressed data seg-
ments; and wherein
said locator identifies a memory location of said com-
pressed data memory storing at least part of an associ-
ated compressed data segment;
said locator includes a memory address and an offset, said
memory address identifying said memory location from
aplurality of memory locations of said compressed data
memory, and said offset being indicative of the position
of a first bit of said associated compressed data segment
within said memory location; and
said step of generating said locator of said associated com-
pressed data segment includes
calculating a sum of the sizes of each of said compressed
data segments in said series stored prior to said asso-
ciated compressed data segment,
dividing said sum by a value equal to the width of each
of said plurality of memory locations of said com-
pressed data memory to obtain a quotient and a
remainder,
converting said quotient to said memory address, and
setting said offset equal to said remainder.
2. The method of claim 1, wherein:
said series of data segments comprises a series of blocks of
image data;

US 9,083,977 B2

23

said step of encoding includes performing a Discrete
Cosine Transform (DCT) on each block of image data in
said series to generate a series of blocks of DCT coeffi-
cients; and

the DCT coefficients in each said block of DCT coefficients

are generated without reference to any other block of
DCT coefficients in said series.

3. The method of claim 2, wherein, for each block of DCT
coefficients in said series of blocks of DCT coefficients, said
step of encoding further includes:

quantizing said block of DCT coefficients to produce a

block of quantized coefficients;

zig-zag encoding said block of quantized coefficients to

produce a sequence of quantized coefficients;
run-length encoding said sequence of quantized coeffi-
cients to produce run-length-encoded (RLE) data; and
entropy encoding said RLE data to produce one of said
series of compressed data segments.

4. The method of claim 3, further comprising:

receiving a second series of data segments;

encoding said second series of data segments into a second

series of compressed data segments; and wherein:

said step of quantizing said block of DCT coefficients

includes using quantization data to quantize said block
of DCT coefficients;
said step of entropy encoding said RLE data includes using
entropy data to entropy-encode said RLE data; and

said quantization data and said entropy data does not
change between said steps of encoding said series of
data segments and encoding said second series of data
segments.
5. The method of claim 1, wherein said series of com-
pressed data segments is stored in said compressed data
memory free of header information associated with said
series of compressed data segments.
6. The method of claim 1, further comprising storing said
locator for each of said compressed data segments.
7. The method of claim 6, further comprising:
receiving a request for at least one compressed data seg-
ment selected from said series of compressed data seg-
ments stored in said compressed data memory;

retrieving the locator associated with said requested com-
pressed data segment;

using said retrieved locator to locate the beginning of said

requested compressed data segment among said series
of compressed data segments stored in said compressed
data memory; and

retrieving said requested compressed data segment from

said compressed data memory.

8. The method of claim 7, further comprising:

retrieving a second locator associated with a second com-

pressed data segment stored in said compressed data
memory; and

using said second locator to locate the end of said requested

compressed data segment in said compressed data
memory.

9. The method of claim 7, further comprising decoding said
requested compressed data segment out of order with the rest
of said series of compressed data segments.

10. The method of claim 9, wherein said step of decoding
said requested compressed data segment includes:

entropy decoding said requested compressed data segment

to produce run-length-encoded (RLE) data;

run-length decoding said RLE data to produce a plurality

of quantized coefficients;

w

10

—_
w

20

25

30

35

40

45

50

55

60

24

performing an inverse zig-zag process on said plurality of
quantized coefficients to produce a block of quantized
coefficients;

dequantizing said block of quantized coefficient to produce
a block of absolute Discrete Cosine Transform (DCT)
coefficients; and

performing an inverse DCT process on said block of abso-
Iute DCT coefficients without reference to any other
block of DCT coefficients to produce a block of decoded
data.

11. The method of claim 10, wherein said step of decoding
said requested compressed data segment does not include
parsing a header associated with said series of compressed
data segments prior to decoding said requested compressed
data segment.

12. The method of claim 1, wherein:

said series of data segments comprises a series of blocks of
image data defining an image; and

said compressed data memory is a frame buffer for storing
compressed data defining said image.

13. A system facilitating random access to segments of

compressed data stored in memory, said system comprising:
a data input coupled to receive a series of data segments;
an encoder operative to encode said series of data segments
into a series of compressed data segments, each of said
compressed data segments having a variable segment
size;
a compressed data memory coupled to receive said series
of compressed data segments from said encoder and to
store said series of compressed data segments; and
a locator generator operative to determine the size of each
of said series of said compressed data segments and to
generate a locator for each of said series of compressed
data segments; and wherein
said locator identifies a memory location of said com-
pressed data memory storing at least part of an associ-
ated compressed data segment;
said locator includes a memory address and an offset, said
memory address identifying said memory location from
aplurality of memory locations of said compressed data
memory, and said offset being indicative of the position
of a first bit of said associated compressed data segment
within said memory location; and
for each of said associated compressed data segments, said
locator generator is further operative to
calculate a sum of the sizes of each of said compressed
data segments in said series stored prior to said asso-
ciated compressed data segment,

divide said sum by a value equal to the width of each of
said plurality of memory locations of said compressed
data memory to obtain a quotient and a remainder,

convert said quotient to said memory address, and

set said offset equal to said remainder.

14. The system of claim 13, wherein:

said series of data segments comprises a series of blocks of
image data;

said encoder is operative to perform a Discrete Cosine
Transform (DCT) on each block of image data in said
series to generate a series of blocks of DCT coefficients;
and

the DCT coefficients in each said block of DCT coefficients
are generated without reference to any other block of
DCT coefficients in said series.

15. The system of claim 14, wherein, for each block of

DCT coefficients in said series of blocks of DCT coefficients,
said encoder is further operative to:

US 9,083,977 B2

25

quantize said block of DCT coefficients to produce a block
of quantized coefficients;
zig-zag encode said block of quantized coefficients into a
sequence of quantized coefficients;
run-length encode said sequence of quantized coefficients
to produce run-length-encoded (RLE) data; and
entropy encode said RLE data to generate one of said series
of compressed data segments.
16. The system of claim 15, wherein:
said input terminal set is further operative to receive a
second series of data segments;
said encoder is further operative to
encode said second series of data segments into a second
series of compressed data segments,

quantize said block of DCT coefficients using quantiza-
tion data, entropy encode said RLE data using entropy
data; and

said encoder is operative to encode said series of data
segments and said second series of data segments
using the same said quantization data and said entropy
data.
17. The system of claim 13, wherein said series of com-
pressed data segments is stored in said compressed data
memory free of header information associated with said
series of compressed data segments.
18. The system of claim 13, further comprising a locator
memory operative to store said locator for each of said com-
pressed data segments.
19. The system of claim 18, further comprising:
a data request input operative to receive a request for at
least one compressed data segment stored among said
series of compressed data segments in said compressed
data memory; and
a controller operative to
retrieve the locator associated with said requested com-
pressed data segment,

use said retrieved locator to locate the beginning of said
requested compressed data segment among said
series of compressed data segments in said com-
pressed data memory, and

retrieve said requested compressed data segment from
said compressed data memory.

20. The system of claim 19, wherein said controller is
further operative to:

retrieve a second locator associated with a second com-
pressed data segment stored in said compressed data
memory; and

use said second locator to locate the end of said requested
compressed data segment in said compressed data
memory.

21. The system of claim 19, further comprising a decoder
operative to decode said requested compressed data segment
out of order with the rest of said series of compressed data
segments.

22. The system of claim 21, wherein said decoder includes:

an entropy decoder operative to entropy decode said
requested compressed data segment to produce run-
length-encoded (RLE) data;

a run-length decoder operative to run-length decode said
RLE data to produce a plurality of quantized coeffi-
cients;

an inverse zig-zag unit operative to perform an inverse
zig-zag process on said plurality of quantized coeffi-
cients to produce a block of quantized coefficients;

a dequantizer operative to dequantize said block of quan-
tized coefficient to produce a block of absolute Discrete
Cosine Transform (DCT) coefficients; and

10

15

20

25

30

35

40

45

55

[

0

65

26

an inverse DCT unit operative to perform an inverse DCT
process on said block of absolute DCT coefficients with-
out reference to any other block of DCT coefficients.

23. The system of claim 22, wherein said decoder is opera-
tive to decode said requested compressed data segment with-
out parsing a header associated with the series of compressed
data segments prior to decoding said requested compressed
data segment.

24. The system of claim 13, wherein:

said series of data segments comprises a series of blocks of

image data defining an image; and

said compressed data memory is a frame buffer for storing

compressed data defining said image.

25. A non-transitory, electronically-readable storage
medium having code embodied therein for causing an elec-
tronic device to:

receive a series of data segments;

encode said series of data segments into a series of com-

pressed data segments, each of said compressed data
segments having a variable segment size;

store said series of compressed data segments in a com-

pressed data memory;

determine the size of each of said compressed data seg-

ments; and

generate a locator for each of said compressed data seg-

ments; and wherein

said locator identifies a memory location of said com-

pressed data memory storing at least part of an associ-
ated compressed data segment;

said locator includes a memory address and an offset, said

memory address identifying said memory location from
aplurality of memory locations of said compressed data
memory, and said offset being indicative of the position
of a first bit of said associated compressed data segment
within said memory location; and

said locator for each of said compressed data segments is

generated by causing said electronic device to

calculate a sum of the sizes of each of said compressed
data segments in said series stored prior to said asso-
ciated compressed data segment,

divide said sum by a value equal to the width of each of
said plurality of memory locations of said compressed
data memory to obtain a quotient and a remainder,

convert said quotient to said memory address, and

set said offset equal to said remainder.

26. The non-transitory, electronically-readable storage
medium of claim 25, wherein:

said series of data segments comprises a series of blocks of

image data;

said step of encoding includes performing a Discrete

Cosine Transform (DCT) on each block of image data in
said series to generate a series of blocks of DCT coeffi-
cients; and

the DCT coefficients in each said block of DCT coefficients

are generated without reference to any other block of
DCT coefficients in said series.

27. The non-transitory, electronically-readable storage
medium of claim 26, wherein, for each block of DCT coeffi-
cients in said series of blocks of DCT coefficients, said code
is further operative to cause said electronic device to:

quantize said block of DCT coefficients to produce a block

of quantized coefficients;

zig-7ag encode said block of quantized coefficients to pro-

duce a sequence of quantized coefficients;

run-length encode said sequence of quantized coefficients

to produce run-length-encoded (RLE) data; and

US 9,083,977 B2

27

entropy encode said RLE data to produce one of said series

of compressed data segments.

28. The non-transitory, electronically-readable storage
medium of claim 27, wherein said code is further operative to
cause said electronic device to:

receive a second series of data segments;

encode said second series of data segments into a second

series of compressed data segments; and wherein:

use quantization data to quantize said block of DCT coef-

ficients;

use entropy data to entropy-encode said RLE data; and

wherein

said quantization data and said entropy data do not change

between encoding said series of data segments and
encoding said second series of data segments.

29. The non-transitory, electronically-readable storage
medium of claim 25, wherein said series of compressed data
segments is stored in said compressed data memory free of
header information associated with said series of compressed
data segments.

30. The non-transitory, electronically-readable storage
medium of claim 25, wherein said code is further operative to
cause said electronic device to store said locator for each of
said compressed data segments.

31. The non-transitory, electronically-readable storage
medium of claim 30, wherein said code is further operative to
cause said electronic device to:

receive a request for at least one compressed data segment

selected from said series of compressed data segments
stored in said compressed data memory;

retrieve the locator associated with said requested com-

pressed data segment;

use said retrieved locator to locate the beginning of said

requested compressed data segment among said series
of compressed data segments stored in said compressed
data memory; and

retrieve said requested compressed data segment from said

compressed data memory.

32. The non-transitory, electronically-readable storage
medium of claim 31, wherein said code is further operative to
cause said electronic device to:

retrieve a second locator associated with a second com-

pressed data segment stored in said compressed data
memory; and

use said second locator to locate the end of said requested

compressed data segment in said compressed data
memory.

33. The non-transitory, electronically-readable storage
medium of claim 31, wherein said code is further operative to
cause said electronic device to decode said requested com-
pressed data segment out of order with the rest of said series
of compressed data segments.

34. The non-transitory, electronically-readable storage
medium of claim 33, wherein said code is further operative to
cause said electronic device to:

entropy decode said requested compressed data segment to

produce run-length-encoded (RLE) data;

run-length decode said RLE data to produce a plurality of

quantized coefficients;

perform an inverse zig-zag process on said plurality of

quantized coefficients to produce a block of quantized
coefficients;

dequantize said block of quantized coefficient to produce a

block of absolute Discrete Cosine Transform (DCT)
coefficients; and

10

15

20

25

30

35

40

45

50

55

60

65

28

perform an inverse DCT process on said block of absolute
DCT coefficients without reference to any other block of
DCT coefficients to produce a block of decoded data.
35. The non-transitory, electronically-readable storage
medium of claim 34, wherein said electronic device does not
parse a header associated with said series of compressed data
segments prior to decoding said requested compressed data
segment.
36. The non-transitory, electronically-readable storage
medium of claim 25, wherein:
said series of data segments comprises a series of blocks of
image data defining an image; and
said compressed data memory is a frame buffer for storing
compressed data defining said image.
37. A system facilitating random access to segments of
compressed data stored in memory, said system comprising:
an input terminal set coupled to receive a series of data
segments;
means for encoding said series of data segments into a
series of compressed data segments, each of said data
segments being encoded independently of any other of
said compressed data segments, each of said compressed
data segments having a variable segment size;
a compressed data memory coupled to receive and store
said series of compressed data segments; and
means for locating each of said compressed data segments
in said compressed data memory, said means for locat-
ing being operative to determine the size of each of said
series of said compressed data segments and to generate
a locator for each of said series of compressed data
segments; and wherein
said locator identifies a memory location of said com-
pressed data memory storing at least part of an associ-
ated compressed data segment;
said locator includes a memory address and an offset, said
memory address identifying said memory location from
aplurality of memory locations of said compressed data
memory, and said offset being indicative of the position
of a first bit of said associated compressed data segment
within said memory location; and
for each of said associated compressed data segments, said
means for locating each of said compressed data seg-
ments is further operative to
calculate a sum of the sizes of each of said compressed
data segments in said series stored prior to said asso-
ciated compressed data segment,
divide said sum by a value equal to the width of each of
said plurality of memory locations of said compressed
data memory to obtain a quotient and a remainder,
convert said quotient to said memory address, and
set said offset equal to said remainder.

38. A method for randomly accessing a segment of com-
pressed data from memory, said method comprising:
receiving a request for a compressed data segment selected
from a series of compressed data segments stored in a
compressed data memory, each of said compressed data
segments having a variable segment size;
retrieving a locator defining a size;

using said retrieved locator to locate said requested com-
pressed data segment within said series of compressed
data segments in said compressed data memory; and

retrieving said requested compressed data segment from
said compressed data memory; and wherein

US 9,083,977 B2

29

said step of using said retrieved locator to locate said
requested compressed data segment includes

determining a sum of the sizes of each of said com-
pressed data segments in said series stored prior to
said requested compressed data segment,

dividing said sum by a value equal to a width of each of
a plurality of memory locations of said compressed
data memory to obtain a quotient and a remainder,

converting said quotient to a memory address, and
setting an offset equal to said remainder;

said memory address identifies a memory location of said
compressed data memory storing at least part of said
requested compressed data segment; and

said offset indicates the position of a first bit of said
requested compressed data segment within said memory
location.

39. A system for randomly accessing a segment of com-
pressed data from memory, said system comprising:

a data request input operative to receive a request for at
least one compressed data segment selected from a
series of compressed data segments stored in a com-
pressed data memory, each of said compressed data seg-
ments having a variable segment size; and

10

15

20

30

a controller operative to
retrieve a locator including a size,
use said retrieved locator to locate said requested com-
pressed data segment within said series of com-
pressed data segments in said compressed data
memory, and
retrieve said requested compressed data segment from
said compressed data memory; and wherein
to use said retrieved locator to locate said requested com-
pressed data segment, said controller is further operative
to
determine a sum of the sizes of each of said compressed
data segments in said series stored prior to said
requested compressed data segment,
divide said sum by a value equal to a width of each of a
plurality of memory locations of said compressed
data memory to obtain a quotient and a remainder,
convert said quotient to a memory address, and
set an offset equal to said remainder;
said memory address identifies a memory location of said
compressed data memory storing at least part of said
requested compressed data segment; and
said offset indicates the position of a first bit of said
requested compressed data segment within said memory
location.

